Description
P0913ZY 8-channel isolated output module
P0913ZY 8-channel isolated output module
Module Clips Drive controller servo moto
P0913ZY PDF
P0913ZY HS:8541300000
P0913ZY Weight: 2.0kg
P0913ZY Size: 40 * 30 * 20cm
.Many products are not yet on the shelves please contact us for more products
.If there is any inconsistency between the product model and the picture on display, the model shall prevail. Contact us for the specific product picture,
and we will arrange to take photos in the warehouse for confirmation
.We have 16 shared warehouses around the world, so please understand that it can sometimes take several hours to accurately return to you. Of course,
we will respond to your concerns as soon as possible
P0913ZY FOXBORO, also known as Foxboro, is a well-known brand in the field of industrial automation, belonging to Invensys Group. It was later acquired by Schneider Electric in January 2014.
As a world leading provider of industrial control products and solutions, FOXBORO”s products are widely used in multiple industries such as oil and gas, petrochemicals, electricity, pulp and paper,
food and beverage, water and wastewater treatment, and serve tens of thousands of factories worldwide.
1、 Products and Services
The products and services provided by P0913ZY FOXBORO include but are not limited to:
Planning and Scheduling: Help enterprises optimize production plans and improve production efficiency.
Advanced control and optimization: Through advanced control algorithms, optimize the production process.
Human Machine Interface: Provides an intuitive and user-friendly interface for operators to monitor the production process.
Process control: including DCS (distributed control system), etc., to achieve precise control of the production process.
Process measurement: Provide high-quality sensors and transmitters for measuring process variables such as temperature, pressure, flow rate, and liquid level.
Security Management: Provide comprehensive security solutions to ensure the safety and reliability of the production process.
In addition, FOXBORO also provides services such as condition monitoring, training simulation, alarm management, network security, and enterprise asset management to help
customers balance the availability and utilization of personnel, equipment, energy, and inventory, thereby achieving excellent economic value.
GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512 , PPD113, PP836A, PP865A, PP877, PP881, PP885,5SHX1960L0004 3BHL000390P0104 5SGY35L4510 etc.,
P0904HA,E69F-TI2-S,FBM230/P0926GU,FEM100/P0973CA,etc.,
TC-PPD011,CC-PCNT02,etc.,
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
Figure 4 Tool Framework
2.3Smart component creation
Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).
Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters after measurement.
Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation
2.4 Create tool coordinate system
Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.
2.5 Creating trajectories and programming
Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1, and then program on the simulation teaching pendant. The procedure is as follows:
PRoCmain()
setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.
waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting point and end point of the robot’s action.
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point
Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30
Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10
waitTime1: wait 1s, transition
ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC
2.6 Simulation design and verification
Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor. In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.
Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic. Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for problems existing in the simulation.
3Summary and outlook
This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation. It covers aspects such as creating a workstation, setting up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.
In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory during the actual debugging process. ,Optimize paths and improve debugging efficiency.
5X00499G01 Westinghouse INPUT CONTACT MODULE
5X00357G03 Westinghouse I/O Interface Controller
5X00301G01 Westinghouse analog input module
5X00300G02 Westinghouse DCS Control Module
5X00241G02 Westinghouse Processor Module
5X00241G01 Westinghouse Processor Module
5X00226G04 Westinghouse I/O Interface Module
5X00226G03 Westinghouse I/O Interface Controller
5X00226G02 Westinghouse analog input module
5X00226G01 Westinghouse ANALOG INPUT EMOD ASSEMBLY – HART
5X00225G01 Westinghouse Controller Base Assembly
5X00167G01 Westinghouse Analog Output Module
5X00109G01 Westinghouse HART Analog Input Module
5X00106G01 Westinghouse ANALOG INPUT EMOD ASSEMBLY – HART
5X00070G01 Westinghouse Analog Input Hi Speed Module
5X00070G03 Westinghouse Personalization Module
5X00058G01 Westinghouse HART Analog Input Module
1C31233G01 Westinghouse Control Module
DFP100 DFP14C1N000GB GE Digital feeder protection relay
IC693PWR322 GE Standard Power Supply module
1C31227G02 Westinghouse Digital Input
1C31201G01 Westinghouse Personalization Module
1C31197G05 Westinghouse Analog Input Module
1C31194G03 Westinghouse Control Module
1C31194G01 Westinghouse Digital Input
1C31192G01 Westinghouse Digital Input
1C31189G01 Westinghouse Speed Detector Interface
1C31179G01 Westinghouse Digital Input
IC800SSI228RD2-CE GE Servo control module
P-OPEN-P4-150PAC-OP150P4 Neri Electrical Interface Solenoid Valve
1C31150G01 Westinghouse Digital Input
1C31147G01 Westinghouse Digital Input
1C31129G03 Westinghouse Analog quantity input
1C31107G01 Westinghouse Digital Input
TU830V1 3BSE013234R1 ABB Extended Module Termination Unit
IC695RMX128 GE RX3i Redundant Memory Xchange Module
IC660ELB912 GE Genius Network Interface module
IC695CPU315 GE CPU module for the RX3i PACSystem platforms
DM-20 RELIANCE Servo Controller
1761-L32AWA Allen-Bradley MicroLogix Controller
SBI-PDP-32 GE Profibus-DP
R-TPD3 GE CIRCUIT BOARD
531X307LTBAHG1 GE LAN Terminal Board 531X Series
531X303MCPBBG1 F31X303MCPA00200 GE Supply Board
DS6800CCIE1F1D GE Control System
SK-G9-GDB1-D481 Allen-Bradley PowerFlex 700 printed circuit board
SK-G9-GDB1-D292 Allen-Bradley Power Interface Board
and we will arrange to take photos in the warehouse for confirmation
Of course, we will respond to your concerns as soon as possible
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts