Description
P0901VN PDF
The products and services provided by P0901VN FOXBORO include but are not limited to:
P0901VNinstructions P0901VNTechnical Manual
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
As an official offline programming software for ABB robots, Robotstudio not only has powerful simulation and offline programming functions, but also has automatic path generation function and simulation monitoring collision function. It can realize the simulation of robots in real scenes, so as to timely update existing robot programs. optimize. On-site teaching programming will affect normal production activities on site.
The application of Robotstudio software offline programming can reduce on-site teaching and programming time.
As a traditional process of mechanical processing, deburring and grinding have a wide range of applications. However, for a long time, in the process of manual deburring and polishing, there have been differences in operations between workers. The manual operation is not repeatable and the deburring effect is unstable, which has seriously affected the surface quality and service life of the finished product; and the working environment There is a large amount of dust floating in the air and the conditions are harsh, seriously endangering the physical and mental health of workers. With the proposal of “Made in China 2025”, intelligent manufacturing production has become an important development direction for the transformation and upgrading of the future manufacturing industry. The use of industrial robot automated production lines for repetitive batch processing operations can not only greatly improve production efficiency, but also greatly improve product quality. Yield and production stability. Therefore, before designing the robot polishing program, if the shape, size and polishing amount of the workpiece to be polished are known, the robot offline program can be written on the Robotstudio software according to the existing conditions, thereby improving the efficiency of on-site programming.
1Design task description
This task is to create a new simulation workstation in ABB robot simulation software Robotstudio. The corresponding training equipment in reality is the Yalong YL-l360A industrial robot deburring and grinding system control and application equipment. The industrial robot selection and method of the simulation workstation are The grinding head installed on the blue plate refers to the Yalong YL-l360A industrial robot deburring and grinding system control and application equipment, and the workpiece is customized. The ABB industrial robot deburring and grinding workstation simulation training process includes: creating a workstation, setting up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification.
2 Task implementation
2.1 Create a workstation
Import the robot: First, create a new simulation workstation in the Robotstudio software. The workstation name is self-named, and then import the corresponding industrial robot IRB1410. The robot position remains unchanged by default. Create a robot system, modify the system options, check 709-1DeviceNetMaster/s1ave, select Chinese as the language, and leave the other options unchanged by default, then click Confirm to create the robot system. After the robot system is created, hide the industrial robot IRB1410 to facilitate subsequent workstation operations.
Import workpiece: The workpiece here is customized, and the corresponding workpiece is selected according to the actual situation on site. This article uses the original workpiece Curvet in Robotstudio software. After importing it into the workstation, according to the reachable range of the robot, just place the workpiece at a suitable location within the reachable range of the robot, as shown in Figure 1.
Import the grinding rotor tool: First, create a new grinding rotor tool component – rotor – copy (2) and rotor – copy (2) in the so1idworks 3D software. The rotor – copy (2) is a rotatable grinding rotor. —The copy is the tool body, which is the grinding rotor frame, and is installed on the robot flange, as shown in Figure 2.
2.2 Setting tools
First, move the rotatable grinding rotor and the tool body to the local origin based on point A, and adjust the initial tool angle so that the grinding rotor is parallel to the x-axis of the geodetic coordinate system, as shown in Figure 3. Set the local origin of the tool body at this time, change the position x, y,: to 0, 0, 0, and change the direction x, y,: to 0, 0, 0.
Figure 3 Tool settings
Create a new frame at point B of the tool body, name it “frame l”, and adjust the direction of frame l so that the axis is perpendicular to the plane of point B. The specific direction is shown in Figure 4.
CI541V1 3BSE014666R1 |ABB| I/O module
CI535V30 3BSE022162R1 |ABB|Switch input terminal board
CI534V02 3BSE010700R1|ABB| Submodule MODBUS Interface
CI522A 3BSE018283R1 |ABB|Logic control module
CI520V1 3BSE012869R1|ABB| Digital output terminal board
LDSYN-101 3BHE005555R0101|ABB|Sequence simulation module
07ZE23 GJR2292800R202|ABB| Dual digital output module
07YS03 GJR2263800R3|ABB| PLC module card
GJR5251300R0161 |ABB| Remote extender module
07KT93 GJR5251300R0161 |ABB| Remote extender module
XVC770BE101 3BHE021083R0101 |ABB| Output module
NAIO-02|ABB|Digital input module
IMFEC12 |ABB| Analog input module
07AB61 |ABB|Switch quantity input card
07BA60 GJV3074397R1|ABB| PLC central processing unit
UNS0883A-P,V1 3BHB006208R0001|ABB|Excitation system module
UNS0880A-P,V1 3BHB006338R0001|ABB| Driver interface module
HIEE300936R0101|ABB|Analog output module
3BHE024577R0101|ABB|Network communication module
PM902F 3BDH001000R0001 |ABB|AC 900F| CPU module
UFC760BE142 3BHE004573R0142 ABB Printed circuit board
UFC760BE143 3BHE004573R0143|ABB| Distributed I/O module
PP D239 A1102 3BHE029594R1102 |ABB| AC 800PEC|Control system
SCYC 55880 |ABB|Universal digital input terminals
1TGE120010R1001|ABB| DCS module
BC820 3BSE071500R1|ABB|AC800M|CEX bus interconnection device
PM891K02|ABB|AC800M|Controller module
SM812 3BSE072270R1|ABB|AC800M|Digital I/O module
PM867K02 3BSE081638R1|ABB|System module
PM865K02 3BSE031150R1|ABB|AC800M|Network communication card
PM864K02|3BSE018164R1|ABB|AC800M
PM864K01|3BSE018161R1|ABB|Main processor
PM863K02|3BSE088382R1|ABB|AC800M|Main processor
PM863K01 3BSE088381R1|ABB|Controller unit|AC800M
PM862K02|3BSE081636R1|ABB|Controller module
PM862K01|ABB| AC800M|CPU processor
PM861K01 3BSE018157R1 ABB Servo drive
PM861K02 ABB AC800M controller
PM858K02 3BSE082896R1 ABB AC800M Safety system
PM858K01 3BSE082895R1 ABB Control module
PM857K02 3BSE088386R1 ABB CPU module
PM857K01 3BSE088385R1 ABB Control system module
METSO A413177 Communication board module
METSO A413222 Analog interface module
METSO D100532 Simulator module
METSO A413313 Analog expansion module
METSO A413310 Input interface module
METSO A413659 Signal board module
METSO D100314 Communication extension module
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit
Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts