Sale!

8105N Invensys Triconex system

¥666.00

8105N Invensys Triconex system
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

8105N Invensys Triconex system
8105N Invensys Triconex system
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
What IO combinations can a mini PLC combine with to achieve automated control?
At present, there are two main design modes for controllers like PLC, one is integrated design and the other is modular design. From the name, we can feel that there are two different PLCs, one that cannot be disassembled and the other that can be disassembled. Due to the fact that the main control module and IO module of the modular PLC can be spliced as needed, its volume and weight are usually very small, and we cannot call it a mini PLC too much. So, what IO combinations can such a small gadget combine with to achieve automation control? Let”s take a brief inventory:8105N Invensys Triconex system
1. Firstly, there is the digital quantity acquisition IO module, which is used to collect digital quantity information. Typical examples include counter IO, PNP type digital quantity acquisition IO, NPN type digital quantity acquisition IO, etc.
2. Then there is the digital output IO module, which is used to send digital instructions. The most typical example is PWM output IO, which can output pulse signals to control servo motors or stepper motors for operation.
3. After talking about digital IO, let”s talk about analog IO. Analog signal acquisition type IO includes voltage signal acquisition, current signal acquisition, and temperature signal acquisition. The IO for collecting temperature signals includes PT100, PT1000, and various thermocouple temperature acquisition modules.
4. Finally, there are analog output IO, as well as output current signals and voltage signals.
In addition to the above IO modules, our modular PLC also supports extended communication interfaces, further enhancing the equipment”s scalability.
Module Input/Output (I/O) Knowledge8105N Invensys Triconex system
Module Input/Output (I/O) Knowledge
I think it”s necessary to talk about the sorting of the input and output ports of the module. Generally, we can divide it into IO functional division and IO specifications.
The purpose of the former is mainly to convert all functions into actual division into MCU IO ports, while the purpose of the latter is to determine the specifications of all IO ports. Of course, you can completely skip these tasks, and it”s also possible. Depending on the company”s requirements, I think individuals still consider them as a work habit.
The following examples are all created for my blog post. If there are any duplicate names, please do not contact me.
Looking at the above figure, first determine all input and output functions and power input, as well as communication.
Then separate the power distribution with different lines, and start organizing each power supply line and processing process. The final purpose of the entire diagram is to clearly allocate the input and output sequence.
The IO specification is to provide a detailed description of all interfaces, crystal oscillators, and other information to the MCU.
1. Enter the number of low effective interfaces and how much pull-up resistance (switch wet current) is required (how much current does the microcontroller need to absorb, which may be injected into the microcontroller after pull-up).
2. Enter the number of highly effective interfaces, how many pull-down resistors are required (switch wet current), (how much current does the microcontroller need to absorb, and it is possible to inject the microcontroller after the switch is effective)
3. Number of analog input interfaces, evaluate whether the analog ports of the microcontroller are sufficient, and confirm the required analog conversion accuracy. Evaluate whether the A/D conversion reference voltage needs to be replaced (to meet accuracy requirements). Consider how many power supplies need to be tested and how many analog input ports are configured.
4. Evaluate the requirements for crystal oscillator accuracy and whether a phase-locked loop is required.
The above requirements are mainly aimed at module design and need to be confirmed during the early development of the module. All requirements can be organized using an Excel table and displayed in the diagram.
Distributed dual Ethernet IO module
The distributed dual Ethernet IO module adopts an industrial grade design, which meets the demanding industrial application scenarios. It is equipped with a dedicated high-performance Ethernet chip, which can quickly achieve cascade networking between IO modules without the need for repeated wiring, saving on-site wiring costs.
The distributed dual Ethernet IO module comes with switch input, switch output, relay output, analog input, analog input, thermal resistance input, etc. It supports high-speed pulse input counting and high-speed pulse output, and is designed specifically for industrial field data collection, measurement, and control. The distributed dual Ethernet IO module supports Modbus TCP protocol and Modbus RTU protocol for uplink, which can quickly connect to existing DCS, SCADA, PLC, HMI and other systems. The distributed dual Ethernet IO module supports one RS485 interface and supports Modbus RTU Master function. It can expand the IO module, read and write intelligent instrument data, or connect to HMI, DCS, PLC and other devices as a Modbus Slave.
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
Barium rhenium technology remote IO modules are widely used in IoT scenarios such as intelligent transportation, smart water conservancy, smart agriculture, smart campuses, smart communities, smart power distribution, and smart water conservancy.
With the development of IIOT industrial Internet of Things technology, more and more traditional assets need to be connected to the internet, achieving unified data collection and analysis, and breaking the phenomenon of traditional device information silos. The barium rhenium technology remote IO module M160T, which supports IoT protocols, has become an excellent choice for many enterprises to achieve device networking, remote control, and data collection based on the compatibility of existing devices and the accessibility of IoT platforms!
Ethernet communication technology is a mature communication technology because it has the characteristics of stability, reliability, mature technology, fast transmission speed, and fast construction wiring. Due to its wide application, Ethernet communication through the MQTT protocol is the main way for enterprise equipment to go to the cloud. Barium rhenium technology can quickly collect data and control such as air compressor room, property living pump room, street light control, liquid level collection, temperature and humidity collection through Ethernet remote IO module.8105N Invensys Triconex system
So, why is the remote IO module of barium rhenium technology widely used in the field of industrial IoT? The specific reasons are as follows.
1. Actively connect to cloud platforms:
Based on the characteristics of Ethernet communication networks, the barium rhenium technology remote IO module does not require complex settings such as peanut shells to achieve the Internet of Things. The barium rhenium technology remote IO module needs to support both TCP client and TCP server functions.
2. Compatibility with existing systems:
It supports TCP Server and Modbus TCP protocol functions, and is compatible with device access of traditional upper level systems or HMI TCP clients.
3. Support multiple IoT platforms:
Supports standard MQTT, Modbus TCP, and Modbus RTU over TCP protocols. It can be connected to public cloud IoT platforms and user built MQTT private clouds through the MQTT protocol. It can also be connected to SCADA and DCS systems through Modbus TCP.
4. Rich IO interfaces and scalability:
There are many types of IO for industrial field data collection and replication. The Ethernet IO module of barium rhenium technology supports signal acquisition from various devices such as 4-20Ma, 0-20mA, 0-5V, 0-10V, RS485, DI, DO, PT100, PT1000, pulse input, pulse output, etc. At the same time, it expands the instrument data reading ability of RS485 devices.
5. Convenient installation method:
The volume of industrial on-site control boxes is often very limited, and the barium rhenium technology Ethernet IO module adopts a direct plug-in connection terminal and rail installation method. The compact volume greatly saves space in the control box!
6. Industrial grade design
The industrial environment is harsh, and the remote IO module using barium rhenium technology needs to adopt an industrial grade design, which can work continuously and stably in harsh environments.
Through the use of barium rhenium technology remote IO modules, there is no need to replace existing various enterprise assets, and the digital transition to the Internet of Things platform can be quickly achieved. Therefore, barium rhenium technology remote IO modules are widely used in industrial IoT, such as intelligent real estate, intelligent campus, intelligent factory, intelligent transportation, intelligent water conservancy, intelligent agriculture, intelligent campus, intelligent community, intelligent transportation, and many other industries.
What is the role of distributed IO modules and what are their main applications in
The distributed IO module transmits status signals from the measurement and control field to various measurement and control fields for control. It is mainly used in the industrial field and can also be used for detection of equipment such as air conditioners and motors.
In distributed systems, there are important business data closely related to system operation, as well as data related to nodes, application services, and data services, which are crucial for the normal operation of clusters.
IO on general PLCs is usually closely followed by CPU units, but in order to facilitate connection and maintenance, the concept of distributed IO has been proposed in the industrial field. That is to say, the IO unit can be arranged far away from the PLC CPU unit and communicate through the network communication protocol of the device layer.
The distributed IO module is developed for detecting and implementing remote control of various types of standard analog and switch signals (frequency, pulse, or switch state signals) in the field of measurement and control. The series of modules can digitize the test signal front-end and transmit it to the host through optical fiber; Or transmit the control instructions sent by the host to the controlled device to achieve remote control. Especially suitable for state detection and control of complex electromagnetic environments in power, industrial control, on-site switchgear, and large power equipment.
The role of distributed IO modules:
1. Support 4-way switch digital quantity
2. Supports 8 analog inputs
3. 4 relay outputs, 1 RS485 serial port data acquisition to Ethernet
4. 485 to Ethernet serial server
5. Supports Modbus to TCP/UDP protocol conversion
6. Supports virtual serial ports and interfaces with various configuration software
7. Support 0-5V, 0-10V, 0-30V range acquisition
8. Supports 0-20ma and 4-20ma range acquisition
TRICONEX 3805E Invensys can accommodate the backplane of previous modules
TRICONEX 3805E Invensys can accommodate the backplane of previous modules
Fault tolerance in the TRICONEX 3805E is achieved through the the third mock examination redundancy (TMR) architecture. Tricon can provide error free and uninterrupted control in the event of hard faults or internal or external transient faults in components. Tricon adopts a completely triple architecture design, from the input module to the main processor and then to the output module. Each I/O module contains three independent branch circuits. Each pin on the input module reads process data and passes this information to their respective main processors. The three main processors communicate with each other using a proprietary high-speed bus system called TriBus. Every scan, the three main processors synchronize and communicate with their two neighbors through TriBus. Tricon votes on digital input data, compares output data, and sends copies of analog input data to each main processor. The main processor executes user written applications and sends the output generated by the application to the output module. In addition to voting on input data, TriBus also votes on output data. This is done on the output module as close to the field as possible to detect and compensate for any errors between the Tricon voting and the final output driven to the field.
The TRICONEX 3805E system typically consists of the following typical modules: [2]
Main processor modules (three).8105N Invensys Triconex system
Communication module.
Input and output modules: can be analog and/or digital, can work independently, or can be hot backup (backup).
Power module (redundant).8105N Invensys Triconex system
A backplane (chassis) that can accommodate previous modules.
System cabinet: One or more chassis can be compressed into one cabinet.
Organize cabinets to adapt and standardize interface connections between on-site instruments and Triconex system cabinets.
Human Machine Interface (HMI) for monitoring events.
Engineering Workstation (EWS) for programming. Monitoring, troubleshooting, and updating.
The remote IO module is designed according to the demanding industrial application environment requirements, embedded with a 32-bit high-performance microprocessor MCU, to meet various combinations of digital, analog, and thermal resistance IO modules. The communication protocol of the remote IO module adopts the standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. The remote IO module supports a wide working voltage of DC9-36V and has anti reverse protection function. It is equipped with a built-in watchdog and comprehensive lightning protection and anti-interference measures to ensure reliability.
The remote IO module supports 1 isolated 10/100M adaptive Ethernet interface with 15KV ESD protection, optocoupler isolated digital input, and supports dry wet contact input. The first channel can be used as pulse counting, supporting high-speed pulse and low-speed pulse modes. The default is high-speed pulse frequency with a maximum of 700KHz, and the optional low-speed pulse frequency with a maximum of 10KHz; DO output supports transistor Sink output, with the first channel available for high-speed pulse output, supporting pulse frequencies of 10Hz~300KHz; The remote IO module supports isolated 12 bit resolution analog input: 0-5V, 0-10V, 0-20mA, 4-20mA differential input; 1 channel RS485 communication interface, supporting standard Modbus RTU protocol for expansion; The thermal resistance RTD input supports two types: PT100 and PT1000;
What are the common types of IO extension modules? How much does an IO expansion module usually cost?
2. Analog Input Output Module: A module used to process and monitor analog signal input and output. Common analog input and output modules include modules based on resistors, transistors, and optocouplers.
3. Communication Interface Module: A module used to achieve communication between devices. Common communication interface modules include modules based on interfaces such as RS232, RS485, Ethernet, and CAN.
4. Special Function Module: A module used to implement specific functions. For example, the PWM (Pulse Width Modulation) module is used to control the speed and direction of the motor, and the counting module is used to achieve counting functions.
The price of IO expansion modules may vary depending on different brands, models, and functions.
Generally speaking, the price of more basic IO expansion modules ranges from tens to hundreds of yuan, while the price of IO expansion modules with more complex functions and stronger performance may be higher.
For example, the Io extension module ET1010 recently released by Zongheng Intelligent Control Company costs only 169 yuan per unit, and supports functions such as front-end and back-end cascading, sensorless expansion, and plug and play. It can be purchased in bulk or applied for a free trial address; The specific prices of these IO modules need to be queried and compared based on the specific modules you need.
Application of IO Link in Industrial Automation
This article mainly introduces the overall solution of ST IO Link communication master station used in industrial systems, including the following 5 aspects:
Firstly, the application of IO Link in industrial automation; The second is the introduction of ST IO Link main station transceiver; The third is the introduction of our ST”s IO Link main site evaluation board; The fourth is an introduction to the reference design scheme of the IO Link main station; The fifth is a demonstration of the IO Link master station reference design.
The industrial automation system can be said to be composed of many levels. The top level is usually industrial Ethernet to transmit data to the upper control center or monitoring center of the factory, while the middle layer is usually some PLC system for specialized process processing, such as controlling a specialized assembly line or production line. At the bottom, there are usually many industrial sensors, such as temperature sensors, pressure sensors, flow sensors, or proximity sensors, as well as some actuators, such as valves, moving lights, relays, or contactors, which are used for collecting and controlling physical quantities.
Between these levels, there will also be some modules or gateways for conversion and processing work. Therefore, in traditional industrial systems, there are many different level standards and communication protocols on site, resulting in poor modularity and versatility. Because there are both analog signals on site, such as a 4 to 20 mA current loop and analog voltage signals, as well as digital signals. In such an environment, analog signals are particularly susceptible to interference from harsh on-site environments. At the same time, sensors or actuators for analog transmission cannot perform on-site remote configuration or calibration 8105N Invensys Triconex system diagnosis work. In order to solve the transmission of the last segment of data to sensors and actuators in industrial field environments, as described earlier, we have introduced a specialized digital interface IO Link to achieve fully digital transmission between the interface modules of sensors and industrial field buses. The bidirectional data transmission makes it possible to parameterize the interaction of on-site data, diagnose and transmit information. By using this technology, remote condition monitoring and predictable maintenance of terminal equipment can be achieved, thereby effectively alleviating the problem of production line downtime.
Its advantages include:8105N Invensys Triconex system
Firstly, whether it is a pure digital sensor, an analog sensor after digital quantization, or different types of actuators, unified access can be achieved, thus achieving a simplified and standardized system architecture. Secondly, the transmission of digital signals will have stronger anti-interference ability than the transmission of analog signals, so the reliability of the system will also be stronger. Thirdly, through the bidirectional transmission of digital signals, more intelligent and advanced actuators or sensors can be used, making it easier to achieve status monitoring and system diagnostic protection functions. In this way, any issues and status of the production line can be monitored and maintained in real-time, ensuring the reliability, maintainability, and upgradability of the entire production line, thereby ensuring the minimum downtime.
The following is the specific content about IO Link technology
Firstly, the definition of the IO LINK standard enables data transmission, processing, configuration, and diagnostic information exchange between sensors or actuators and control systems. Secondly, this is a simple peer-to-peer communication architecture, where a master port is connected to a device port. Then, it can achieve compatibility with existing communication architectures, such as reusing cables and interfaces. At the same time, the IO Link system also has backward compatibility upgrade capability, as the master end of the system uses digital binary serial communication to interact with devices, and vice versa.
It can be said that IO link makes the system simpler:
Firstly, this is a universal standard communication method that complies with IEC61131-9. Secondly, IO Link is an intelligent communication system that solves the digital information exchange and transmission of the last distance from the control host to the terminal device. Thirdly, IO Link is simple to use and can be said to be plug and play, compatible with some existing system devices.
Some related products and solutions provided by ST in IO Link communication solutions
Firstly, in this communication system, the IO Link Master, which connects to the upper computer controller, is one of the main key solutions that will be mentioned later. Secondly, ST can provide some communication chips on the IO Link Master project, such as L6360. On the other side of the sensor or actuator end, namely the IO Link Slave end, ST can provide communication chips L6362A and L6364 on this IO Link Slave slave project. According to standards, this three-wire point-to-point communication method is easily compatible with some existing sensor actuators” standard ports, such as M12 standard industrial connectors and M12 standard connector wires. In addition, its advantages include the ability to achieve point-to-point bidirectional signal transmission within a single cable, as well as the general power supply requirements of the master end to the sensor actuator. According to the general requirements of the current industry, the maximum length of this cable is 20 meters, and the three wires inside are 24V, 0V, and data cables. The L+of this chip can support up to 500 milliamperes. If greater current is needed, there are also other L+drivers, including Load Switch IPS and other products, which can provide greater current or can be applied externally. The IO Link communication speed can generally reach a baud rate of 230.4K per COM3, and it also has functions such as status indication and detection.
For some specific application characteristics of IO Link, the communication transceiver system composed of L6360 and L6362A can support three standard data types of IO Link, namely COM1 (4.8k), COM2 (38.4K), and COM3 (230.4K) modes. This communication system can meet the requirements of all modern standards, industrial sensors, and actuators: firstly, it can quickly and very easily configure or reconfigure sensors or actuators. Secondly, it can be widely applied to various standardized sensors or systems that execute information. Thirdly, as a digital communication system, compared to traditional analog signal transmission systems, it can reduce power consumption and improve system efficiency. Fourthly, it has complete diagnostic and protection functions, which can improve the reliability of related systems. Therefore, it can be widely used to drive various digital sensors and actuators, as well as input and output modules of PLC, in order to achieve and meet various requirements of Industry 4.0.
How to Determine the Interference Problem of PROFINET IO Communication
Preliminary Diagnosis of PROFINET Interference Problems
1. Overview
When debugging PROFINET IO communication, it is common to encounter communication failures. One of the reasons for communication failures is interference. PROFINET IO communication equipment often operates in complex industrial electromagnetic environments, and incorrect shielding grounding or non-standard installation may lead to communication interference problems. Since optical signals are not affected by electromagnetic interference, this article only introduces interference problems with electrical signals.
2. How to determine interference issues
If PROFINET IO communication is affected by electromagnetic interference, a simple judgment can generally be made through the following aspects:
2.1. Judging the communication status through PROFINET IO
If the following communication phenomena are found during PROFINET IO communication debugging or operation, it may be affected by electromagnetic interference:
① Occasionally, communication is interrupted and restored.
② When certain on-site devices or specific operations are turned on, communication is interrupted, and on the contrary, communication returns to normal.
2.2. By using STEP7 online diagnostic information to determine and view the diagnostic buffer information of the IO controller, how to detect the presence of frequent communication failures and recovery information between the IO controller and IO devices in the diagnostic buffer, as shown in the following figure, may be affected by electromagnetic interference:
14 STEP7 Device Diagnostic Buffer Information
3. How to troubleshoot and solve interference problems
If a suspected electromagnetic interference causing PROFINET IO communication failure is found, how should we troubleshoot and solve it? The following will be introduced from the following aspects:
3.1 Increase PROFINET IO communication watchdog time
Due to PROFINET IO communication failure occurring during watchdog time, the IO controller did not provide input or output data (IO data) to the IO device, and watchdog time=the number of update cycles allowed for IO data loss × The refresh time is usually automatically calculated and allocated by the IO controller. This time value is generally small. If electromagnetic interference is encountered, the probability of communication failure occurring within the automatically calculated watchdog time will increase. At this time, we can appropriately increase the PROFINET IO communication refresh time or the number of update cycles allowed for IO data loss to increase the watchdog time. However, this method may not solve serious electromagnetic interference problems, and it is recommended to eliminate and solve them through subsequent methods.

8105N TRICONEX controller
2401 TRICONEX controller
PLM 3900N Invensys Triconex system
4119 Safety Instrumented System (SIS)
3201 Invensys Triconex system
3721C Safety Instrumented System (SIS)
7760059030 TRICONEX controller
2868252 TRICONEX controller
FTA-554 TRICONEX controller
9662-810 Safety Instrumented System (SIS)
9771-210 Invensys Triconex system
3623T TRICONEX controller
3674 Safety Instrumented System (SIS)
2382 Safety Instrumented System (SIS)
9566-8XX TRICONEX controller
4329 TRICONEX nput/output communication card
3636R Invensys Triconex system
MP3101 Safety Instrumented System (SIS)
3607E TRICONEX nput/output communication card
3101 Invensys Triconex system
3625 Invensys Triconex system
T8461 Invensys Triconex system
3721-C1 Safety Instrumented System (SIS)
9771-210 Safety Instrumented System (SIS)
3008N TRICONEX nput/output communication card
5354 Invensys Triconex system
4107 TRICONEX controller
3706A TRICONEX nput/output communication card
3502E Safety Instrumented System (SIS)
PS8310 Safety Instrumented System (SIS)
4000093-310 TRICONEX nput/output communication card
9563-810 Safety Instrumented System (SIS)
3625 TRICONEX controller
9001NJ Invensys Triconex system
PI3381 TRICONEX controller
3625C1 Safety Instrumented System (SIS)
3720 Invensys Triconex system
2351 Safety Instrumented System (SIS)
3506X Invensys Triconex system
9662-810 Invensys Triconex system
3009 TRICONEX nput/output communication card
2290614 Invensys Triconex system
8111 TRICONEX controller
3721 TRICONEX nput/output communication card
4000098-510 TRICONEX controller
2868252 TRICONEX nput/output communication card
3623T Safety Instrumented System (SIS)
3607E Safety Instrumented System (SIS)
MA2211-100 Safety Instrumented System (SIS)
2301 TRICONEX nput/output communication card
4200 TRICONEX nput/output communication card
3501TN2 TRICONEX nput/output communication card
3607E TRICONEX controller
3805H Safety Instrumented System (SIS)
3708EN TRICONEX nput/output communication card
9001NJ Safety Instrumented System (SIS)
9671-810 TRICONEX nput/output communication card
9761-210 TRICONEX controller
3502E TRICONEX controller
4000103-510N TRICONEX controller
3604E TRICONEX controller
AO3481 Safety Instrumented System (SIS)
3636R Safety Instrumented System (SIS)
3624 Invensys Triconex system
8310N2 TRICONEX controller
3201 Safety Instrumented System (SIS)
3674 Invensys Triconex system
9566-8XX TRICONEX nput/output communication card
3506X TRICONEX nput/output communication card
4201 Safety Instrumented System (SIS)
3721C TRICONEX nput/output communication card
4352AN Safety Instrumented System (SIS)
3501E Safety Instrumented System (SIS)
3501E TRICONEX controller
2290614 TRICONEX controller
MA2211-100 Invensys Triconex system
MA2211-100 TRICONEX controller
PI3381 Safety Instrumented System (SIS)
4211 Invensys Triconex system
2868252 Safety Instrumented System (SIS)
HD8311 TRICONEX nput/output communication card
3301 Invensys Triconex system
2382 Invensys Triconex system
9563-810 Invensys Triconex system
4329G Safety Instrumented System (SIS)
4000093-310 Invensys Triconex system

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts