Sale!

3723X TRICONEX controller

¥666.00

3723X TRICONEX controller
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

3723X TRICONEX controller
3723X TRICONEX controller
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
What exactly does embedded development do?
Embedded development is a technology similar to programming, but our understanding of the scope of programmers is to do computer software, web development, and also to do apps.
The majority of embedded development is intelligent electronic products, which are designed for hardware programming. This hardware can be understood as a circuit board, usually composed of a controller (processor) chip and different circuits.
The specific program and circuit are generally determined by the product function. For example, an electronic clock product is usually composed of a digital tube and a microcontroller (controller), and then written in C language to download it to the microcontroller to achieve clock display.3723X TRICONEX controller
Of course, there are far more products that can be developed in embedded systems, including smartphones, wearable devices, drones, robots, mice and keyboards, and so on.
The knowledge system of embedded development and design is also very diverse, and different products require different learning contents.
So, if we want to enter embedded development, we must first understand several directions of embedded development, otherwise you will never find a starting point.
The general mainstream directions are microcontroller development, ARM+Linux development, and FPGA/DSP development.
I have been working on microcontroller development for the past 10 years of my career.
Microcontrollers can be said to be the foundation of all directions. If you have strong microcontroller development capabilities, then ARM+Linux, or FPGA/DSP are easy for you to get started.
The development of microcontrollers is also one of the directions with the lowest threshold for embedded systems. Initially, I was self-taught in electrical engineering and transferred there. It took me about four months from the beginning of my studies to finding a job.
However, at that time, the threshold was still very low, and you could basically find a job by working on a small project with a 51 microcontroller.
If it”s the current situation, you only know these things and have little competitiveness. Nowadays, the main focus of enterprises is on whether you have project experience, rather than what kind of microcontroller you know.
The project experience can be accumulated through practical projects with endless microcontroller programming, which can be said to be the closest to actual development at present.
At present, the salary of single-chip microcontrollers is not low, and it is normal for them to start at 8K in first tier cities, and they can reach 15K after working for 2-3 years.
There are many industries covered by embedded systems, and in the later stage, based on work, we will only focus on one direction. From a macro perspective, we will divide it into embedded software development and embedded hardware development. Software development is mainly based on application software development on systems (Linux, VxWorks, WinCE, etc.), and hardware development includes motherboard design, system porting, cutting, and writing low-level drivers
My personal experience started with microcontrollers. Firstly, I studied C and C++, digital and analog electronics, power electronics, circuit design, microcontroller principles, FreeRTOS, data structures, and computer operating systems. Later, due to work requirements, I relearned university automation control theory, signals and systems, complex functions, linear algebra, calculus, statistics, and compiler principles. These are all basics, and it is important to understand and thoroughly study them, This will bring help to the later research and development work, and there is also a need for more drawing board, drawing board, and practical operation. Without practicing optics, the efficiency is very low, and knowledge is repetitive. Only by repeatedly looking and using can we understand. We can buy some development boards to assist in learning. Now that the internet is developed, network resources can improve our learning efficiency.
Embedded development refers to developing under an embedded operating system, commonly used systems include WinCE, ucos, vxworks, Linux, Android, etc. In addition, develop using C, C++, or assembly; Using advanced processors such as arm7, arm9, arm11, powerpc, mips, mipsel, or operating systems also belongs to embedded development.
1. Basic knowledge:
Purpose: I can understand the working principles of hardware, but the focus is on embedded software, especially operating system level software, which will be my advantage.
Subjects: Digital Circuits, Principles of Computer Composition, and Embedded Microprocessor Architecture.
Assembly Language, C/C++, Compilation Principles, Discrete Mathematics.
Data structure and algorithms, operating systems, software engineering, networks, databases.
Method: Although there are many subjects, they are all relatively simple foundations and most of them have been mastered. Not all courses may be taught, but elective courses can be taken as needed.
Main books: The C++programming language (I haven”t had time to read it), Data Structure-C2.
2. Learning Linux:
Purpose: To gain a deeper understanding of the Linux system.
Method: Using Linux ->Linxu system programming development ->Driver development and analysis of the Linux kernel. Let”s take a closer look, then the main topic is principles. After reading it a few times, look at the scenario analysis and compare it deeply. The two books intersect, with depth being the outline and emotion being the purpose. Analysis is version 0.11, suitable for learning. Finally, delve into the code.
Main books: Complete Analysis of Linux Kernel, Advanced Programming in Unix Environment, Deep Understanding of Linux Kernel, Scenario Analysis, and Source Generation.
3. Learning embedded Linux:
Purpose: To master embedded processors and their systems.
Method: (1) Embedded microprocessor structure and application: Direct arm principle and assembly are sufficient, without repeating x86.
(2) Embedded operating system class: ucOS/II is simple, open source, and easy to get started. Then delve deeper into uClinux.
(3) Must have a development board (arm9 or above) and have the opportunity to participate in training (fast progress, able to meet some friends).
Main books: Mao Decao”s “Embedded Systems” and other arm9 manuals and arm assembly instructions.
Ethernet IO module assists industrial robots
Industrial robots are multi joint robotic arms or multi degree of freedom machine devices aimed at the industrial field, which can achieve many material distribution, retrieval, pallets, and so on in industrial sites. However, due to the fact that many industrial six axes are equipped with 32 IO ports as standard, the IO ports are not sufficient in practical applications. Therefore, some DIN and DO extensions can be met through IO modules.
MQTT Ethernet IO Remote Module3723X TRICONEX controller
The Modbus TCP Ethernet IO module has multiple channels, such as 4-way, 8-way, and 16-way switch input and output options. The communication protocol of the Ethernet IO module adopts the standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. Can support LAN configuration, with 1 DC power output to other devices on site, reducing the difficulty and cost of on-site wiring.
Most of the MQTT Ethernet IO modules should collect some IO port information and transmit data through the network port. In fact, the Ethernet IO module can not only serve as a TCP server, but also as a TCP client. In addition, it can not only count high-speed pulses but also output high-3723X TRICONEX controllerspeed pulses. This is very convenient for doing some control processing on industrial sites, such as controlling servo motors and other scenarios! The most important thing is the data caching function. Even if the network is disconnected, it is not afraid. The data will be automatically cached, and after the network is restored, it will be automatically retransmitted.
The MxxxT industrial remote Ethernet I/O data acquisition module is embedded with a 32-bit high-performance microprocessor MCU, and integrates an industrial grade 10/100M adaptive Ethernet interface to support the standard Modbus protocol. It can easily integrate with third-party SCADA software, PLC, and HMI devices for application. Equipped with an RS485 interface, it has good scalability and can be cascaded with standard Modbus RTU I/O devices through the RS485 bus to achieve the combination of various digital, analog, and thermal resistance IO modules, saving costs. At the same time, this device has the function of cluster register mapping, and the data of the cluster is automatically collected into the mapping storage area of the local computer. The upper computer can respond quickly without waiting when querying, meeting the strict and timely functional requirements of industrial sites.
What is a remote IO module and what are its purposes
Technology is constantly evolving, and we can come into contact with various electronic devices both in daily life and in the workplace. And a large number of electronic devices work together to generate some signal sources. In order to better transmit and collect signals, industrial control products such as remote IO modules, signal transmitters, and signal acquisition modules have been developed.
In the past, people had to connect existing lines and boxes one at a time, which greatly increased the cost and construction time of cables. Moreover, if the distance was too long, they also had to face issues such as voltage attenuation. And through the remote IO module, this problem can be effectively solved.
If your cabinet is 200 meters away from the site and remote IO is not used, then you can extend each signal line by 200 meters and install the remote IO module on site, which can save you a lot of cable costs and reduce the complexity of construction.
In short, sometimes some IOs are set far away from the central control room and then connected back to the central control room through fiber optics to save on cable procurement and construction. Sometimes, the logical “remote” is because the allowed quantity of “local IO” cannot meet the actual needs, so it is necessary to connect to the “remote IO template”, which depends on the situation.
In addition, the general cabinet is placed on the equipment site. However, some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to transmit these signals to the control system in the computer room.
What is an Ethernet IO module and what are its functions
The Ethernet IO module is a hardware gateway that adds IO to the network port.
The Ethernet IO module has hardware interfaces such as switches, analog signals, relays, RS485, RJ45, etc. Can be used for IO data collection network port transmission in industrial automation. Simply put, it refers to sensors with standard signals on site, or serial devices with 485 signals such as PLCs, which can be converted into real values through such gateways and then transmitted to the host for display through network ports.
1. Collect and control data for internal processing and transmit it to the external network through Ethernet
2. Support 4-way photoelectric isolation switch input
3. Supports 4 independent relay control outputs
4. Supports 8 analog inputs, 4-20mA or 0-5V/0-10V/0-30V (optional)
5. Support RS485 serial port data collection, with serial port server function
6. Supports Modbus RTU communication protocol and virtual serial port
7. Supports docking with various configuration software and TCP/UDP servers
How to Build High Channel Density Digital IO Modules for the Next Generation Industrial Automation Controllers
With the rapid development of industrial automation, digital IO modules have become an indispensable part of industrial automation controllers. The digital IO module can connect the controller with external devices, such as sensors, actuators, etc., to achieve monitoring and control of industrial production processes. However, with the continuous development of industrial automation, digital IO modules need to have higher channel density and stronger functionality to meet the needs of new industrial automation controllers. Therefore, it is very important to build high channel density digital IO modules for the next generation of industrial automation controllers.
The digital IO module is one of the most fundamental modules in industrial automation controllers, and its main function is to connect the controller with external devices to achieve signal input and output. The digital IO module usually includes two parts: a digital input module and a digital output module. The digital input module can convert the digital signals of external devices into signals that the controller can read, while the digital output module can convert the digital signals output by the controller into signals that external devices can read. The channel density of a digital IO module refers to the number of digital input or digital output channels provided on the module, which is the input and output capacity of the module.
With the development of industrial automation, digital IO modules need to have higher channel density and stronger functions to meet the needs of new industrial automation controllers. The following are several aspects to consider when building a high channel density digital IO module for the next generation of industrial automation controllers:3723X TRICONEX controller
1. Choose the appropriate communication protocol
Digital IO modules typically communicate with controllers through communication protocols, so choosing a suitable communication protocol is crucial. Common communication protocols include Modbus, Profibus, CANopen, Ethernet, etc. Different communication protocols have different advantages and disadvantages, and selecting a suitable communication protocol requires considering the following factors:
(1) Communication speed: The faster the communication speed, the shorter the response time of the digital IO module, which can process input and output signals faster.
(2) Communication distance: The farther the communication distance, the wider the application range of digital IO modules.
(3) Reliability: The reliability of communication protocols determines the stability and reliability of digital IO modules.
(4) Cost: Different communication protocols have different costs, and suitable communication protocols need to be selected based on actual needs.
2. Choose the appropriate digital IO chip
The digital IO chip is the core component of the digital IO module, and its performance and function directly affect the channel density and function of the digital IO module. Choosing a suitable digital IO chip requires considering the following factors:
(1) Channel density: The channel density of digital IO chips determines the channel density of digital IO modules, and channel density needs to be selected based on actual needs.
(2) Input/output type: Digital IO chips usually support digital input and digital output, and some chips also support functions such as analog input and output, counters, etc.
(3) Speed: The speed of the digital IO chip determines the response speed of the digital IO module, and it is necessary to choose a chip with a faster speed.
(4) Accuracy: The accuracy of digital IO chips determines the signal accuracy of digital IO modules, and it is necessary to choose chips with higher accuracy.
(5) Cost: Different digital IO chips have different costs, and suitable chips need to be selected based on actual needs.
3. Optimize circuit design
The circuit design of digital IO modules has a significant impact on their performance and stability. In order to improve the channel density and functionality of digital IO modules, it is necessary to optimize circuit design, such as:
(1) Using high-speed digital IO chips: Using high-speed digital IO chips can improve the response speed and accuracy of the module.
(2) Adopting anti-interference design: In order to improve the stability of the digital IO module, it is necessary to adopt anti-interference design, such as using filters, isolators, etc.
(3) Using optimized PCB layout: Optimizing PCB layout can reduce noise and interference in digital IO modules, improve module performance and stability.
4. Choose the appropriate shell material and size
Digital IO modules typically need to be installed in cabinets or control cabinets, so choosing the appropriate housing material and size is crucial. The shell material should have good protective and heat dissipation properties to protect the circuits of the digital IO module from external environmental influences. The shell size should be able to adapt to different installation environments, such as cabinets, control cabinets, etc.
5. Optimize software design
The software design of the digital IO module determines its functionality and performance. In order to achieve high channel density and stronger functionality, it is necessary to optimize software design, such as:
(1) Supporting multiple input and output types: Supporting multiple input and output types can meet different application needs, such as digital input and output, analog input and output, counters, etc.
(2) Supporting multiple communication protocols: Supporting multiple communication protocols can adapt to different controllers and application environments.
(3) Support for online debugging and monitoring: Supporting online debugging and monitoring can facilitate user diagnosis and maintenance of modules.
(4) Support for expansion function: Supporting expansion function can increase the functionality and application range of the module while ensuring channel density.
In summary, building a high channel density digital IO module for the next generation of industrial automation controllers requires multiple considerations, including selecting suitable communication protocols, selecting suitable digital IO chips, optimizing circuit design, selecting suitable shell materials and sizes, and optimizing software design. Only by comprehensively considering these factors can a digital IO module with high channel density and stronger functionality be constructed to meet the needs of new industrial automation controllers.
How to assign IO devices to IO controllers?
PROFINET IO system
The PROFINET IO system consists of a PROFINET IO controller and its assigned PROFINET IO devices. After adding IO controllers and IO devices, it is necessary to assign IO controllers to the IO devices to form a basic PROFINET IO system.
Prerequisite requirements
● Already in the network view of STEP 7.
A CPU has been placed (e.g. CPU 1516-3 PN/DP).
● An IO device has been placed (e.g. IM 155-6 PN ST)
Operating Steps (Method 1)
To assign IO devices to IO controllers, follow these steps:
1. Move the mouse pointer over the interface of the IO device.
2. Hold down the left mouse button.
3. Drag the mouse pointer.
The pointer will now use the networking symbol to indicate the “networking” mode. At the same time, you can see a lock character appearing on the pointer
Number. The lock symbol only disappears when the pointer moves to a valid target position.
4. Now, move the pointer to the interface of the desired IO controller and release the left mouse button.
5. Now assign the IO device to the IO controller.
Operating Steps (Method 2)
To assign IO devices to IO controllers, follow these steps:
1. Move the mouse pointer over the word “Unassigned” in the bottom left corner of the IO device icon.
2. Click the left mouse button.
3. Select the IO controller interface to be connected from the available interfaces that appear.
4. Now assign the IO device to the IO controller.
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
MQTT IoT Remote IO Module Based on Ethernet Communication Technology
Barium rhenium technology remote IO modules are widely used in IoT scenarios such as intelligent transportation, smart water conservancy, smart agriculture, smart campuses, smart communities, smart power distribution, and smart water conservancy.
With the development of IIOT industrial Internet of Things technology, more and more traditional assets need to be connected to the internet, achieving unified data collection and analysis, and breaking the phenomenon of traditional device information silos. The barium rhenium technology remote IO module M160T, which supports IoT protocols, has become an excellent choice for many enterprises to achieve device networking, remote control, and data collection based on the compatibility of existing devices and the accessibility of IoT platforms!
Ethernet communication technology is a mature communication technology because it has the characteristics of stability, reliability, mature technology, fast transmission speed, and fast construction wiring. Due to its wide application, Ethernet communication through the MQTT protocol is the main way for enterprise equipment to go to the cloud. Barium rhenium technology can quickly collect data and control such as air compressor room, property living pump room, street light control, liquid level collection, temperature and humidity collection through Ethernet remote IO module.3723X TRICONEX controller
So, why is the remote IO module of barium rhenium technology widely used in the field of industrial IoT? The specific reasons are as follows.
1. Actively connect to cloud platforms:
Based on the characteristics of Ethernet communication networks, the barium rhenium technology remote IO module does not require complex settings such as peanut shells to achieve the Internet of Things. The barium rhenium technology remote IO module needs to support both TCP client and TCP server functions.
2. Compatibility with existing systems:
It supports TCP Server and Modbus TCP protocol functions, and is compatible with device access of traditional upper level systems or HMI TCP clients.
3. Support multiple IoT platforms:
Supports standard MQTT, Modbus TCP, and Modbus RTU over TCP protocols. It can be connected to public cloud IoT platforms and user built MQTT private clouds through the MQTT protocol. It can also be connected to SCADA and DCS systems through Modbus TCP.
4. Rich IO interfaces and scalability:
There are many types of IO for industrial field data collection and replication. The Ethernet IO module of barium rhenium technology supports signal acquisition from various devices such as 4-20Ma, 0-20mA, 0-5V, 0-10V, RS485, DI, DO, PT100, PT1000, pulse input, pulse output, etc. At the same time, it expands the instrument data reading ability of RS485 devices.
5. Convenient installation method:
The volume of industrial on-site control boxes is often very limited, and the barium rhenium technology Ethernet IO module adopts a direct plug-in connection terminal and rail installation method. The compact volume greatly saves space in the control box!
6. Industrial grade design
The industrial environment is harsh, and the remote IO module using barium rhenium technology needs to adopt an industrial grade design, which can work continuously and stably in harsh environments.
Through the use of barium rhenium technology remote IO modules, there is no need to replace existing various enterprise assets, and the digital transition to the Internet of Things platform can be quickly achieved. Therefore, barium rhenium technology remote IO modules are widely used in industrial IoT, such as intelligent real estate, intelligent campus, intelligent factory, intelligent transportation, intelligent water conservancy, intelligent agriculture, intelligent campus, intelligent community, intelligent transportation, and many other industries.
What is the role of distributed IO modules and what are their main applications in
The distributed IO module transmits status signals from the measurement and control field to various measurement and control fields for control. It is mainly used in the industrial field and can also be used for detection of equipment such as air conditioners and motors.
In distributed systems, there are important business data closely related to system operation, as well as data related to nodes, application services, and data services, which are crucial for the normal operation of clusters.
IO on general PLCs is usually closely followed by CPU units, but in order to facilitate connection and maintenance, the concept of distributed IO has been proposed in the industrial field. That is to say, the IO unit can be arranged far away from the PLC CPU unit and communicate through the network communication protocol of the device layer.
The distributed IO module is developed for detecting and implementing remote control of various types of standard analog and switch signals (frequency, pulse, or switch state signals) in the field of measurement and control. The series of modules can digitize the test signal front-end and transmit it to the host through optical fiber; Or transmit the control instructions sent by the host to the controlled device to achieve remote control. Especially suitable for state detection and control of complex electromagnetic environments in power, industrial control, on-site switchgear, and large power equipment.
The role of distributed IO modules:
1. Support 4-way switch digital quantity
2. Supports 8 analog inputs
3. 4 relay outputs, 1 RS485 serial port data acquisition to Ethernet
4. 485 to Ethernet serial server
5. Supports Modbus to TCP/UDP protocol conversion
6. Supports virtual serial ports and interfaces with various configuration software
7. Support 0-5V, 0-10V, 0-30V range acquisition
8. Supports 0-20ma and 4-20ma range acquisition
What IO combinations can a mini PLC combine with to achieve automated control?
At present, there are two main design modes for controllers like PLC, one is integrated design and the other is modular design. From the name, we can feel that there are two different PLCs, one that cannot be disassembled and the other that can be disassembled. Due to the fact that the main control module and IO module of the modular PLC can be spliced as needed, its volume and weight are usually very small, and we cannot call it a mini PLC too much. So, what IO combinations can such a small gadget combine with to achieve automation control? Let”s take a brief inventory:3723X TRICONEX controller
1. Firstly, there is the digital quantity acquisition IO module, which is used to collect digital quantity information. Typical examples include counter IO, PNP type digital quantity acquisition IO, NPN type digital quantity acquisition IO, etc.
2. Then there is the digital output IO module, which is used to send digital instructions. The most typical example is PWM output IO, which can output pulse signals to control servo motors or stepper motors for operation.
3. After talking about digital IO, let”s talk about analog IO. Analog signal acquisition type IO includes voltage signal acquisition, current signal acquisition, and temperature signal acquisition. The IO for collecting temperature signals includes PT100, PT1000, and various thermocouple temperature acquisition modules.
4. Finally, there are analog output IO, as well as output current signals and voltage signals.
In addition to the above IO modules, our modular PLC also supports extended communication interfaces, further enhancing the equipment”s scalability.
Module Input/Output (I/O) Knowledge3723X TRICONEX controller
Module Input/Output (I/O) Knowledge
I think it”s necessary to talk about the sorting of the input and output ports of the module. Generally, we can divide it into IO functional division and IO specifications.
The purpose of the former is mainly to convert all functions into actual division into MCU IO ports, while the purpose of the latter is to determine the specifications of all IO ports. Of course, you can completely skip these tasks, and it”s also possible. Depending on the company”s requirements, I think individuals still consider them as a work habit.
The following examples are all created for my blog post. If there are any duplicate names, please do not contact me.
Looking at the above figure, first determine all input and output functions and power input, as well as communication.
Then separate the power distribution with different lines, and start organizing each power supply line and processing process. The final purpose of the entire diagram is to clearly allocate the input and output sequence.
The IO specification is to provide a detailed description of all interfaces, crystal oscillators, and other information to the MCU.
1. Enter the number of low effective interfaces and how much pull-up resistance (switch wet current) is required (how much current does the microcontroller need to absorb, which may be injected into the microcontroller after pull-up).
2. Enter the number of highly effective interfaces, how many pull-down resistors are required (switch wet current), (how much current does the microcontroller need to absorb, and it is possible to inject the microcontroller after the switch is effective)
3. Number of analog input interfaces, evaluate whether the analog ports of the microcontroller are sufficient, and confirm the required analog conversion accuracy. Evaluate whether the A/D conversion reference voltage needs to be replaced (to meet accuracy requirements). Consider how many power supplies need to be tested and how many analog input ports are configured.
4. Evaluate the requirements for crystal oscillator accuracy and whether a phase-locked loop is required.
The above requirements are mainly aimed at module design and need to be confirmed during the early development of the module. All requirements can be organized using an Excel table and displayed in the diagram.
Distributed dual Ethernet IO module
The distributed dual Ethernet IO module adopts an industrial grade design, which meets the demanding industrial application scenarios. It is equipped with a dedicated high-performance Ethernet chip, which can quickly achieve cascade networking between IO modules without the need for repeated wiring, saving on-site wiring costs.
The distributed dual Ethernet IO module comes with switch input, switch output, relay output, analog input, analog input, thermal resistance input, etc. It supports high-speed pulse input counting and high-speed pulse output, and is designed specifically for industrial field data collection, measurement, and control. The distributed dual Ethernet IO module supports Modbus TCP protocol and Modbus RTU protocol for uplink, which can quickly connect to existing DCS, SCADA, PLC, HMI and other systems. The distributed dual Ethernet IO module supports one RS485 interface and supports Modbus RTU Master function. It can expand the IO module, read and write intelligent instrument data, or connect to HMI, DCS, PLC and other devices as a Modbus Slave.

9853-610 TRICONEX nput/output communication card
3805E TRICONEX controller
3706A TRICONEX controller
4329 Safety Instrumented System (SIS)
9563-810 TRICONEX nput/output communication card
3301 TRICONEX controller
3201 TRICONEX nput/output communication card
MP3101S2 TRICONEX nput/output communication card
87-008145-03 TRICONEX nput/output communication card
9001NJ TRICONEX controller
3503EN Invensys Triconex system
3636R TRICONEX nput/output communication card
3805E TRICONEX nput/output communication card
MP3101 TRICONEX controller
3511 Safety Instrumented System (SIS)
4000103-510N Safety Instrumented System (SIS)
3201 TRICONEX controller
4210 TRICONEX nput/output communication card
3624 TRICONEX nput/output communication card
4000056-006N TRICONEX nput/output communication card
FTA-554 TRICONEX nput/output communication card
4000103-510 TRICONEX controller
4000098-510 Safety Instrumented System (SIS)
3008 TRICONEX nput/output communication card
3625A Invensys Triconex system
8111 Invensys Triconex system
4000103-510 TRICONEX nput/output communication card
3381 TRICONEX controller
3664 Invensys Triconex system
3351 Safety Instrumented System (SIS)
3007A TRICONEX controller
5354 Safety Instrumented System (SIS)
3501TN2 Invensys Triconex system
8310N2 Invensys Triconex system
3351 TRICONEX nput/output communication card
3401 TRICONEX nput/output communication card
3625A Safety Instrumented System (SIS)
4201 TRICONEX controller
3624 TRICONEX controller
9853-610 TRICONEX controller
3805E Invensys Triconex system
MA2211-100 TRICONEX nput/output communication card
3401 TRICONEX controller
MP3101 Invensys Triconex system
2835015 TRICONEX nput/output communication card
3511 Invensys Triconex system
3704E Safety Instrumented System (SIS)
3502EN2 TRICONEX nput/output communication card
3604E Invensys Triconex system
AO3481 TRICONEX nput/output communication card
3501TN2 TRICONEX controller
3805H TRICONEX nput/output communication card
4119 TRICONEX nput/output communication card

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts