Sale!

3506X Invensys Triconex system

¥666.00

3506X Invensys Triconex system
Brand: TRICONEX
Name: Module
Current: 5A
Voltage: 24V
Mode of use: Hot plug implementation
standard: Import
origin: United States

Category:
  • Email:3221366881@qq.com
  • Phone:+86 17750010683
  • Whatsapp:+8617750010683

Description

3506X Invensys Triconex system
3506X Invensys Triconex system
Module Clips Drive controller servo motor
Contact: Mr. Lai
Wechat:17750010683
Whats app:+86 17750010683
Skype:+86 17750010683
QQ: 3221366881
3221366881@qq.com
What are the characteristics of a demonstration system based on IO Link slave stations
IO Link is an industrial communication interface that is independent of any fieldbus and suitable for simple sensors and actuators at the lowest level of industrial control. The IO Link system includes IO Link devices (such as sensors and actuators), IO Link master stations, and cables for standard sensors. The system structure is shown in Figure 1. For example, when a remote IO module compatible with EtherNet/IP serves as the master station, in addition to standard I/O signals, the module sends and receives configuration data, diagnostic data, or enhanced process data through a pulse modulation process, which is then packaged into EtherNet/IP data packets and finally transmitted to the network master station, usually a PLC. In the above applications, the connection between remote I/O and IO Link devices remains the same as that of traditional discrete devices. The advantage of IO Link mainly lies in its greater information exchange capability, which was previously impossible to achieve with standard I/O devices. Another advantage of IO Link is that it does not rely on any fieldbus, and through any I/O module that complies with the IO Link protocol (including local I/O and remote I/O), IO Link sensors or actuators can be integrated into any fieldbus system.
In order to further study the architecture, communication mechanism, and development application of the IO Link system, an IO Link slave toolkit can be designed and developed, including a universal development module for IO Link, an IO Link analysis tool, and an IO Link slave protocol stack. The IO Link universal development module is the foundation for this work and also serves as a bridge between the IO Link master station and equipment signals. The IO Link analysis tool can help developers and testers analyze communication details to identify and solve problems. The IO Link slave protocol stack is a firmware library that provides a hardware abstraction layer and application program interface, allowing developers to easily and quickly develop IO Link slave products on various microprocessor platforms. The IO Link slave station studied in this article only focuses on digital (button) signal input and digital signal output (indicator light). The design of the IO Link universal development module only needs to be expanded on this basis to have the ability to process analog signals.
The IO Link Master module used in this article, USB IO Link Master, can connect IO Link devices to a PC, which can be configured and tested through the IO Link Device Tool software or demonstrated device functionality. IO Link devices must be described through a device description file (IODD file), which includes a set of XML text files and PNG graphic files, which contain information about device identification, communication characteristics, parameters, process data, and diagnostic data. The portion within the elliptical dashed line in Figure 2 is an IO Link three wire cable, with L+/I – being a 24 V DC power supply and C/Q being a signal line used to transmit process data, diagnostic data, configuration data, etc. The IO Link universal development module is mainly composed of data transceivers and microprocessors. It can process input signals from sensors and transmit information to the IO Link master station. It can also receive and process data information from the master station and transmit it to the actuator. The IO Link analysis tool can help developers view, record, analyze data, and understand communication details. This part of the design is not discussed in this article.
Introduction to IO Link Communication Mode3506X Invensys Triconex system
IO Link devices can operate in SIO mode (standard I/O mode) or IO Link mode (communication mode). After power on, the device always operates in SIO mode. The port of the main station has different configuration methods. If configured in SIO mode, the main station considers the port as a standard digital input. If configured in communication mode, the main station will automatically identify the communicable devices for communication.
2.1 Data Types3506X Invensys Triconex system
The three basic data types for IO Link communication are periodic data (or process data PD), non periodic data (or service data SD), and event.
The process data (PD) of the device is transmitted periodically in the form of a data frame, while service data (SD) is only exchanged after the master station issues a request. Figure 3 shows a typical IO Link message structure. When an event occurs, the “event flag” of the device is set, and the main station reads the reported event (service data cannot be exchanged during the reading process) upon detecting the setting. Therefore, events such as pollution, overheating, short circuits, or device status can be transmitted to the PLC or visualization software through the main station
2.2 Parameter data exchange
Since service data (SD) must be transmitted through PLC requests, SPDU (Service Protocol Data Unit) is defined. In the main station, requests for read and write services are written to SPDU and transmitted to devices through the IO Link interface.
The general structure of SPDU is shown in Figure 4, and its arrangement order is consistent with the transmission order. The elements in SPDU can take different forms depending on the type of service. SPDU allows access to data objects that are intended for transmission, while Index is used to specify the address of the requested data object on the remote IO Link device. In IO Link, there is a term called direct parameter page, which stores parameter information such as minimum cycle time, supplier ID, and master station commands. The data objects accessible in the direct parameter page can be selectively provided through SPDU.
HMT7742 is an IO Link slave transceiver chip that serves as a bridge between the MCU of external sensors or actuators and the 24V signal line that supports IO Link communication. When the IO Link device is connected to the master station, the master station initializes communication and exchanges data with the MCU. HMT7742 serves as the physical layer for communication.
Due to the fact that the three indicator lights (rated voltage 24 V) controlled by the output port of the MCU are powered by the IO Link power cord, it is necessary to monitor the current on the power cord in order to trigger appropriate corrective measures when the current exceeds a set threshold, such as removing the indicator lights from the IO Link power cord. The current monitoring module uses an INA194 current detection amplifier. As a high detection current detector, INA194 is directly connected to the power supply and can detect all downstream faults. It has a very high common mode rejection ratio, as well as a large bandwidth and response speed. It can amplify the voltage on the induction resistor 5O times and output it to the forward input terminal AIN0 of the MCU internal voltage comparator. When the voltage value of AIN0 exceeds the threshold set at the reverse input terminal, By controlling the low level output of PB0, the indicator LAMP can be cut off from the IO Link power line to achieve overcurrent protection function. This part of the circuit is shown in Figure 6.
What is the difference between remote IO and distributed IO
People often discuss the difference between remote IO and distributed IO. However, some people believe that they are the same and terms can be exchanged, while others believe the opposite. What is the difference between remote I/O and distributed I/O? The following is a guide from remote IO manufacturer Zhongshan Technology to understand the difference between remote IO and distributed IO.
Remote and distributed within the location range.3506X Invensys Triconex system
Today”s DCS is a control system with many distributed autonomous controllers, each with many continuous operations. This controller is bundled together by a central monitoring controller. We have used the terms remote and distributed in the locations of I/O and controllers. It is easy to see how these terms are misunderstood.
From the perspective of PLC, remote I/O represents the actual distance that the I/O module is away from the control PLC. Distributed I/O is very intelligent, as mentioned earlier, remote I/O is sometimes referred to as distributed I/O. Let”s take a look at the definition of distributed I/O. This definition is different from remote I/O.
Generally speaking, distributed I/O has a brain or some computing power. By default, it is remote. As mentioned earlier, remote I/O is located physically far from the control PLC. Remote I/O has no brain and cannot perform any computational functions at all. It can be said with certainty that when you hear the term remote I/O, it only involves one controller or PLC, while distributed I/O has multiple controllers.
ZSR-Ethernet-2184 is a distributed Ethernet RTU that supports 4-way switch digital input (Di), 8-way analog input (Ai), 4-way relay (Do) output, 1-way RS485 serial port data acquisition to Ethernet, and Modbus RTU terminal. Merge 485 to Ethernet serial port server function, support Modbus to TCP/UDP protocol conversion, support virtual serial port, and interface with various configuration software. Supports signal acquisition in the range of 0-5V, 0-10V, 0-30V, or 0-20ma, 4-20ma, with built-in software and hardware watchdog, industrial grade components, and stable operation in an industrial environment of -40~85 ° C.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.3506X Invensys Triconex system
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both DI and DO systems, size and heat dissipation issues need to be considered.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used
For example, the current limiting value of DI devices in ADI is 3.5mA/channel. So, as shown in the figure, we use two channels in parallel. If the system must be connected to a Type 2 input, adjust the REFDI resistance and RIN resistance. For some newer components, we can also use pins or select current values through software.
To support a 48V digital input signal (not a common requirement), a similar process needs to be used, and an external resistor must be added to adjust the voltage threshold at one end of the field. Set the value of this external resistor so that the current limiting value * R+threshold of the pin meets the voltage threshold specification at one end of the field (see device data manual).
Finally, due to the connection between the digital input module and the sensor, the design must meet the requirements of reliable operating characteristics. When using a split type scheme, these protective functions must be carefully designed. When selecting integrated digital input devices, ensure that the following are determined according to industry standards:
Wide input voltage range (e.g. up to 40V).
Able to use on-site power supply (7V to 65V).
Capable of withstanding high ESD (± 15kV ESD air gap) and surges (usually 1KV).
Providing overvoltage and overheating diagnosis is also very useful for MCU to take appropriate actions.
Design a High Channel Density Digital Output Module
A typical discrete digital output design has a FET with a driving circuit driven by a microcontroller. Different methods can be used to configure FETs to drive microcontrollers.
The definition of a high-end load switch is that it is controlled by an external enable signal and connects or disconnects the power supply from a given load. Compared to low-end load switches, high-end switches provide current to the load, while low-end switches connect or disconnect the grounding connection of the load to obtain current from the load. Although they all use a single FET, the problem with low-end switches is that there may be a short circuit between the load and ground. High end switches protect the load and prevent short circuits to ground. However, the implementation cost of low-end switches is lower. Sometimes, the output driver is also configured as a push-pull switch, requiring two MOSFETs. Refer to Figure 4 below.
Integrated DO devices can integrate multiple DO channels into a single device. Due to the different FET configurations used for high-end, low-end, and push-pull switches, different devices can be used to achieve each type of output driver.
Application Scheme of Industrial Ethernet Remote IO Module in Intelligent Manufacturing Workshop
With the advent of Industry 4.0, intelligent manufacturing has become a trend in industrial production. Intelligent manufacturing requires efficient, stable, and reliable industrial Ethernet remote IO modules to monitor the production process. This article will share an application case of an intelligent manufacturing workshop based on industrial Ethernet remote IO module.3506X Invensys Triconex system
The production process of this intelligent manufacturing workshop is mainly divided into two parts: injection molding and automated assembly. The injection molding process requires controlling parameters such as the melting temperature of the melt, the speed and pressure of the injection molding machine. The automated assembly process requires controlling the actions of the assembly robot and detecting the quality of the product. In addition to these production process data, there are also equipment production data such as daily and weekly production in the workshop, as well as equipment status data such as operation, manual, automatic, mold adjustment, and alarm.
In the past, the production process of the factory mainly relied on traditional hard wiring to control the production process, resulting in low work efficiency due to the need for frequent replacement of transmission lines to meet production needs. Moreover, it is very difficult to collect a large number of types of detection and monitoring data for intelligent manufacturing. In order to improve efficiency, production quality, and reliability, the factory has introduced the industrial Ethernet remote IO module MxxT using barium rhenium technology.
The injection molding machine itself comes with MODBUS industrial control bus data or basic status signal output. The barium rhenium technology remote IO module collects data from the device interface RS232/RS485 port, collects status information of the injection molding machine such as startup, operation, and pause, and uploads it to the injection molding machine controller, or wirelessly uploads it to the cloud server. Based on devices, according to the communication protocols and interfaces of different devices, data is obtained by calling their interface channels, and then transmitted to the server.
The remote IO module is connected to the controller of the injection molding machine, and the operation data of the injection molding machine is uploaded and distributed wirelessly, achieving remote monitoring and intelligent control of the injection molding machine. In addition, the remote I/O module supports perceptual access to peripheral devices such as mold temperature machines, cutting machines, and dryers for injection molding machines, providing users with smart factory services.
During the injection molding process, the industrial Ethernet remote IO module transmits real-3506X Invensys Triconex systemtime data such as temperature, pressure, and speed to the main controller for monitoring and adjustment, ensuring the stability and compliance of production parameters under different conditions. In the automated assembly process, the industrial Ethernet remote IO module collects data through sensors and other devices, and transmits the relevant data to the main controller for adjustment of relevant actions. For example, the industrial Ethernet remote IO module can monitor the actions of assembly robots, detect the accuracy of product assembly and product quality, and ensure the production quality and stability of the product. At the same time, all production data can also be collected and analyzed remotely, helping enterprise managers better monitor production efficiency and quality.
By introducing industrial Ethernet remote IO modules, this intelligent manufacturing workshop not only improves production efficiency and stability, but also reduces labor and energy costs. Because the industrial Ethernet remote IO module can help enterprises complete the collection and monitoring of production data with one click, as well as avoid unnecessary line replacement and the need for workers to enter and exit the production process, thereby reducing costs and improving production efficiency for enterprises.
In summary, the application of industrial Ethernet remote IO modules in intelligent manufacturing workshops not only improves production efficiency and quality, reduces costs, but also achieves intelligent and digital management of production processes, bringing more opportunities and development space for enterprise development.
In addition, this device is widely used for networking and data collection of industrial equipment such as injection molding machines, air compressors, CNC machine tools, on-site PLCs, instruments, sensors, CNC, and electromechanical equipment.
Building a High Channel Density Digital IO Module for the Next Generation Industrial Automation Controller
There are currently many articles introducing Industry 4.0, and smart sensors are becoming increasingly popular in factory environments (I and other authors have written about these topics). Although we have all noticed a significant increase in the use of sensors in factories, processing plants, and even some newly built automation systems, the widespread use of sensors has also brought about an important change, which is the need to handle a large amount of IO within these old controllers. These IOs may be digital or analog. This requires the construction of high-density IO modules with size and heat limitations. In this article, I will focus on digital IO, and in subsequent articles, I will introduce analog IO.
Usually, digital IO in PLC consists of discrete devices such as resistors/capacitors or independent FET drives. In order to minimize the size of the controller as much as possible and to handle 2 to 4 times the number of channels, this has led to a shift from a separate approach to an integrated approach.
We can use the entire article to illustrate the drawbacks of the split method, especially when the number of channels processed by each module reaches 8 or more. However, when it comes to high heat/power consumption, a large number of split components (from the perspective of size and mean time between failures (MTBF)), and the need for reliable system specifications, it is sufficient to demonstrate that the split method is not feasible.
Figure 1 shows the technical challenges faced in building high-density digital input (DI) and digital output (DO) modules. In both Di and DO systems, size and heat dissipation issues need to be considered.
Digital input
size
heat
Supports all input types
Type 1, 2, 3, Input
Supports 24 V and 48 V inputs
Robust operating specifications
Wire breakage detection
Digital output
Support for different types of output driver configurations
size
Integrated demagnetization of inductive loads
Heat – When driving multiple outputs
Drive accuracy
diagnosis
For digital input, it is also important to note that it supports different input types, including 1/2/3 type inputs, and in some cases, 24V and 48V inputs. In all cases, reliable operating characteristics are crucial, and sometimes circuit detection is also crucial.
For digital outputs, the system uses different FET configurations to drive the load. The accuracy of the driving current is usually an important consideration. In many cases, diagnosis is also very important.
We will explore how integrated solutions can help address some of these challenges.
Design a High Channel Density Digital Input Module
The traditional split design uses a resistive voltage divider network to convert 24V/48V signals into signals that can be used by microcontrollers. The front-end can also use discrete RC filters. If isolation is required, external optocouplers are sometimes used.
Figure 1 shows a typical discrete method for constructing digital input circuits.
Figure 1. Considerations for digital input and output modules.
This type of design is suitable for a certain number of digital inputs; 4 to 8 per board. Beyond this number, this design will soon become impractical. This separation scheme can bring various problems, including:
High power consumption and related board high temperature points.
Each channel requires an optocoupler.
Excessive components can lead to low FIT rate and even require larger devices.
More importantly, the split design method means that the input current increases linearly with the input voltage. Assuming a 2.2K Ω input resistor and 24V V is used. When the input is 1, for example, at 24V, the input current is 11mA, which is equivalent to a power consumption of 264mW. The power consumption of the 8-channel module is greater than 2W, and the power consumption of the 32-bit module is greater than 8W. Refer to Figure 3 below
From a cooling perspective alone, this split design cannot support multiple channels on a single board.
One of the biggest advantages of integrated digital input design is the significant reduction in power consumption, thereby reducing heat dissipation. Most integrated digital input devices allow configurable input current limitations to significantly reduce power consumption.
When the current limiting value is set to 2.6mA, the power consumption is significantly reduced, with each channel approximately 60mW. The rated value of the 8-channel digital input module can now be set below 0.5
Another reason for opposing the use of split logic design is that sometimes DI modules must support different types of inputs. The standard 24V digital input specifications published by IEC are divided into Type 1, Type 2, and Type 3. Type 1 and Type 3 are usually used in combination because their current and threshold limits are very similar. Type 2 has a current limit of 6mA, which is higher. When using the split method, it may be necessary to redesign as most discrete values need to be updated.
However, integrated digital input products typically support all three types. Essentially, Type 1 and Type 3 are generally supported by integrated digital input devices. However, in order to meet the minimum current requirement of 6mA for Type 2 input, we need to use two channels in parallel for one field input. And only adjust the current limiting resistance. This requires a circuit board change, but the change is minimal.
Modify the watchdog time of the PROFINET IO device under 16 STEP7
3.2 Check if the installation of PROFINET IO communication equipment meets the specifications
Most cases of PROFINET IO communication interference problems are caused by equipment installation that does not comply with the installation specifications for PROFINET IO communication, such as incomplete shielding, unreliable grounding, and being too close to interference sources. Installation that meets the specifications can avoid communication failures caused by electromagnetic interference. You can refer to the following brief installation requirements for PROFINET:
1. Wiring of PROFINET 3506X Invensys Triconex system
In order to reduce the coupling of electric and magnetic fields, the larger the parallel distance between PROFINET and other power cable interference sources, the better. In accordance with IEC 61918, the minimum distance between PROFINET shielded cables and other cables can be referred to Table 1. PROFINET 3506X Invensys Triconex system can be wired together with other data cables, network cables, and shielded analog cables. If it is an unshielded power cable, the minimum distance is 200mm.
Comprehensive analysis of the principle and application skills of microcontroller IO port
IO port operation is the most basic and important knowledge in microcontroller practice. This article takes a long time to introduce the principles of IO ports. I also consulted a lot of materials to ensure the accuracy of the content, and spent a long time writing it. The principle of IO ports originally required a lot of in-depth knowledge, but here it has been simplified as much as possible for easy understanding. This will be of great help in solving various IO port related problems in the future.
The IO port equivalent model is my original method, which can effectively reduce the difficulty of understanding the internal structure of the IO port. And after consulting and confirming, this model is basically consistent with the actual working principle.
I mentioned a lot earlier, and many people may already be eager to actually operate microcontrollers. The IO port, as the main means of communication between the microcontroller and the outside world, is the most basic and important knowledge for microcontroller learning. Previously, we programmed and implemented an experiment to light up the LED at the IO port. This article will continue to introduce the relevant knowledge of the IO port.
In order to better learn the operation of IO ports, it is necessary to understand the internal structure and related concepts of IO ports. These knowledge are very helpful for subsequent learning, with a focus on understanding and no need to memorize them intentionally. If you don”t remember, just come back and take a look. If you use it too much, you will naturally remember.
We have said that the most accurate and effective way to understand a chip is to refer to official chip manuals and other materials. But for beginners of microcontrollers, it may be difficult to understand the chip manual directly, especially when they see a bunch of English, unfamiliar circuits, and terminology. If it were me, I would definitely be crazy. But here I still provide a picture taken from Atmel”s official “Atmel 8051 Microcontrollers Hardware Manual”.
The purpose of giving this picture is not to dampen everyone”s enthusiasm for learning, but to help everyone understand how the various microcontroller materials we have seen come from and whether they are accurate. All of these can be clarified through official information, which will be helpful for everyone to further learn something in the future.
Introduction to the Second Function
The above figure is the authoritative 51 microcontroller IO port structure diagram provided by the official. It can be seen that the internal structure of the four sets of IO ports of the microcontroller is different, because some IO ports have a secondary function, as mentioned in the introductory section.
Do you remember this pin diagram? The second function name of the IO port is marked in parentheses. Except for P1, each interface has a second function. When introducing the microcontroller system module, I mentioned that the 51 microcontroller has an interface for reserved extended memory, which is the second function of P0 and P1 in the figure (while also using pins such as 29 and 30). Because it is not widely used and involves in-depth knowledge, no specific research will be conducted. By the way, the AD0~AD7 we see here are actually used for parallel ports. The second function of the P3 port, including serial port, will be introduced in detail later.
The drawbacks of network IO and the advantages of multiplexing IO
In order to talk about multiplexing, of course, we still need to follow the trend and adopt a whiplash approach. First, we will talk about the drawbacks of traditional network IO and use the pull and step method to grasp the advantages of multiplexing IO.
For the convenience of understanding, all the following code is pseudo code, and it is sufficient to know the meaning it expresses.
Blocking IO
The server wrote the following code to handle the data of client connections and requests.
Listenfd=socket()// Open a network communication port
Bind (listenfd)// binding
Listen (listenfd)// Listening while (1){
Connfd=accept (listenfd)// Blocking connection establishment
Int n=read (connfd, buf)// Blocking read data
DoSomeThing (buf)// What to do with the data you read
Close (connfd)// Close the connection and wait for the next connection in a loop
}
This code will be executed with stumbling blocks, just like this.
It can be seen that the thread on the server is blocked in two places, one is the accept function and the other is the read function.
If we expand on the details of the read function again, we will find that it is blocked in two stages.
This is traditional blocking IO.
The overall process is shown in the following figure.
So, if the client of this connection continues to not send data, the server thread will continue to block on the read function and not return, nor will it be able to accept other client connections.
This is definitely not feasible.
Non blocking IO
To solve the above problem, the key is to modify the read function.
A clever approach is to create a new process or thread every time, call the read function, and perform business processing.
While (1){
Connfd=accept (listenfd)// Blocking connection establishment
Pthread_ Create (doWork)// Create a new thread
}
Void doWork(){
Int n=read (connfd, buf)// Blocking read data
DoSomeThing (buf)// What to do with the data you read
Close (connfd)// Close the connection and wait for the next connection in a loop
}
In this way, once a connection is established for a client, it can immediately wait for a new client connection without blocking the read request from the original client.
However, this is not called non blocking IO, it just uses multithreading to prevent the main thread from getting stuck in the read function and not going down. The read function provided by the operating system is still blocked.
So true non blocking IO cannot be achieved through our user layer tricks, but rather by imploring the operating system to provide us with a non blocking read function.
The effect of this read function is to immediately return an error value (-1) when no data arrives (reaches the network card and is copied to the kernel buffer), rather than waiting for blocking.
The operating system provides this feature by simply setting the file descriptor to non blocking before calling read.
Fcntl (connfd, F_SETFL, O_NONBLOCK);
Int n=read (connfd, buffer)= SUCCESS;
In this way, the user thread needs to loop through the call to read until the return value is not -1, and then start processing the business.
We noticed a detail here.
Non blocking read refers to the stage where data is non blocking before it reaches the network card, or before it reaches the network card but has not been copied to the kernel buffer.
When the data has reached the kernel buffer, calling the read function is still blocked and requires waiting for the data to be copied from the kernel buffer to the user buffer before returning.
The overall process is shown in the following figure
IO multiplexing
Creating a thread for each client can easily deplete the thread resources on the server side.
Of course, there is also a clever solution. After accepting each client connection, we can put the file descriptor (connfd) into an array.
Fdlist. add (connfd);
Then create a new thread to continuously traverse the array and call the non blocking read method for each element.
While (1){
For (fd “- fdlist){
If (read (fd)!=- 1){
DoSomeThing();
}
}
}
In this way, we successfully processed multiple client connections with one thread.
Do you think this means some multiplexing?
But this is just like using multithreading to transform blocked IO into seemingly non blocking IO. This traversal method is just a small trick that our users have come up with, and every time we encounter a read that returns -1, it is still a system call that wastes resources.
Making system calls in a while loop is not cost-effective, just like making rpc requests while working on distributed projects.
So, we still need to plead with the operating system boss to provide us with a function that has such an effect. We will pass a batch of file descriptors to the kernel through a system call, and the kernel layer will traverse them to truly solve this problem.
Ethernet IO module assists industrial robots
Industrial robots are multi joint robotic arms or multi degree of freedom machine devices aimed at the industrial field, which can achieve many material distribution, retrieval, pallets, and so on in industrial sites. However, due to the fact that many industrial six axes are equipped with 32 IO ports as standard, the IO ports are not sufficient in practical applications. Therefore, some DIN and DO extensions can be met through IO modules.
MQTT Ethernet IO Remote Module3506X Invensys Triconex system
The Modbus TCP Ethernet IO module has multiple channels, such as 4-way, 8-way, and 16-way switch input and output options. The communication protocol of the Ethernet IO module adopts the standard Modbus TCP protocol, Modbus RTU over TCP protocol, and MQTT protocol. Can support LAN configuration, with 1 DC power output to other devices on site, reducing the difficulty and cost of on-site wiring.
Most of the MQTT Ethernet IO modules should collect some IO port information and transmit data through the network port. In fact, the Ethernet IO module can not only serve as a TCP server, but also as a TCP client. In addition, it can not only count high-speed pulses but also output high-3506X Invensys Triconex systemspeed pulses. This is very convenient for doing some control processing on industrial sites, such as controlling servo motors and other scenarios! The most important thing is the data caching function. Even if the network is disconnected, it is not afraid. The data will be automatically cached, and after the network is restored, it will be automatically retransmitted.
The MxxxT industrial remote Ethernet I/O data acquisition module is embedded with a 32-bit high-performance microprocessor MCU, and integrates an industrial grade 10/100M adaptive Ethernet interface to support the standard Modbus protocol. It can easily integrate with third-party SCADA software, PLC, and HMI devices for application. Equipped with an RS485 interface, it has good scalability and can be cascaded with standard Modbus RTU I/O devices through the RS485 bus to achieve the combination of various digital, analog, and thermal resistance IO modules, saving costs. At the same time, this device has the function of cluster register mapping, and the data of the cluster is automatically collected into the mapping storage area of the local computer. The upper computer can respond quickly without waiting when querying, meeting the strict and timely functional requirements of industrial sites.
What is a remote IO module and what are its purposes
Technology is constantly evolving, and we can come into contact with various electronic devices both in daily life and in the workplace. And a large number of electronic devices work together to generate some signal sources. In order to better transmit and collect signals, industrial control products such as remote IO modules, signal transmitters, and signal acquisition modules have been developed.
In the past, people had to connect existing lines and boxes one at a time, which greatly increased the cost and construction time of cables. Moreover, if the distance was too long, they also had to face issues such as voltage attenuation. And through the remote IO module, this problem can be effectively solved.
If your cabinet is 200 meters away from the site and remote IO is not used, then you can extend each signal line by 200 meters and install the remote IO module on site, which can save you a lot of cable costs and reduce the complexity of construction.
In short, sometimes some IOs are set far away from the central control room and then connected back to the central control room through fiber optics to save on cable procurement and construction. Sometimes, the logical “remote” is because the allowed quantity of “local IO” cannot meet the actual needs, so it is necessary to connect to the “remote IO template”, which depends on the situation.
In addition, the general cabinet is placed on the equipment site. However, some control signals, such as emergency stop and bypass, are implemented in the control room, so remote IO modules need to be used to transmit these signals to the control system in the computer room.
What is an Ethernet IO module and what are its functions
The Ethernet IO module is a hardware gateway that adds IO to the network port.
The Ethernet IO module has hardware interfaces such as switches, analog signals, relays, RS485, RJ45, etc. Can be used for IO data collection network port transmission in industrial automation. Simply put, it refers to sensors with standard signals on site, or serial devices with 485 signals such as PLCs, which can be converted into real values through such gateways and then transmitted to the host for display through network ports.
1. Collect and control data for internal processing and transmit it to the external network through Ethernet
2. Support 4-way photoelectric isolation switch input
3. Supports 4 independent relay control outputs
4. Supports 8 analog inputs, 4-20mA or 0-5V/0-10V/0-30V (optional)
5. Support RS485 serial port data collection, with serial port server function
6. Supports Modbus RTU communication protocol and virtual serial port
7. Supports docking with various configuration software and TCP/UDP servers

128718-01 Mechanical protection system
3500/64M 140734-05 Transient Data Interface Card
3500/64M 140734-05 Mechanical protection system
3300/46 Transient Data Interface Card
18745-03 Framework interface module
3500/94 Framework interface module
3500/93-02-02-02-00 BENTLY NEVADA
3500/05-01-03-00-00-00 Mechanical protection system
3500/40M 140734-01 Framework interface module
3300/65 BENTLY NEVADA
3500/50-01-00-02 Mechanical protection system
3300/20 BENTLY NEVADA
330878-90-00 Transient Data Interface Card
3500/33-01-00 Mechanical protection system
330130-080-00-00 Framework interface module
288055-01 Framework interface module
3500/64 Transient Data Interface Card
3500/22M-01-01-00 Mechanical protection system
3300/45 Framework interface module
3500/05-02-05-00-00-01 BENTLY NEVADA
1900/27 BENTLY NEVADA
330850-51-CN Framework interface module
3300/15 BENTLY NEVADA
3500/05-01-02-00-01 Transient Data Interface Card
3500/05-01-02-00-01 Framework interface module
3500/92-04-01-00 Mechanical protection system
3300/10-02-02-00 Transient Data Interface Card
330130-080-00-00 BENTLY NEVADA
172109-01 BENTLY NEVADA
163179-03 Mechanical protection system
584390 Framework interface module
BENTLY/NEVADA 330400-01-05 Framework interface module
135813-01 Framework interface module
330850-51-CN Mechanical protection system
3300/40 Framework interface module
190662-26 Transient Data Interface Card
330906-02-12-10-02-00 Framework interface module
330850-50-05 Mechanical protection system
3300/20-12-01-01-00-00 Mechanical protection system
3500/46M BENTLY NEVADA
3500/45 176449-04 Mechanical protection system
330709-000-070-10-02-00 Framework interface module
PWB78434-01 Transient Data Interface Card
133819-02 Mechanical protection system
3500/92 Transient Data Interface Card
136711-02 Mechanical protection system
128275-01-E Transient Data Interface Card
3500/33-01-01 Framework interface module
3500/32 Transient Data Interface Card
3500/32-A01-B01 BENTLY NEVADA
3500/53-03-00 Transient Data Interface Card
3500/92 136180-01 Mechanical protection system
125840-01 Framework interface module
140471-01 Mechanical protection system
3500/25 Mechanical protection system
3500/40-01-00 Mechanical protection system
128229-01 Mechanical protection system
3500/42 BENTLY NEVADA
3500/93 135785-01 Transient Data Interface Card
3300/20-12-01-03-00-00 Mechanical protection system
149369-01 Framework interface module
330730-040-00-00 Framework interface module
3500/15E Mechanical protection system
3500/61 163179-02 BENTLY NEVADA
133396-01 Transient Data Interface Card
3500/20 Mechanical protection system
330180-91-00 Mechanical protection system
330180-51-05 Transient Data Interface Card
330180-51-00 Mechanical protection system
133434-01 Mechanical protection system
135613-02 Transient Data Interface Card
1900/65A-00-04-01-00-00 Framework interface module
3500/53-01-00 Mechanical protection system
330851-02-000-070-50-00-05 Framework interface module
130539-30 Framework interface module
3500/25-A01-B01-C00 BENTLY NEVADA
1900/65A-01-00-01-00-00 Transient Data Interface Card
136188-02 Framework interface module
114M5330-01 Transient Data Interface Card
330851-02-000-040-10-01-CN Transient Data Interface Card
3500/40M BENTLY NEVADA
3300/48 BENTLY NEVADA
3500/25-01-05-00 Mechanical protection system
330901-00-40-05-02-05 Mechanical protection system
136719-01 Transient Data Interface Card
584390 Mechanical protection system
81545-01 BENTLY NEVADA
330902-00-40-10-02-00 BENTLY NEVADA
3500/32-01-00 Mechanical protection system
3500/93 135785-02 Framework interface module
177313-02-02 Transient Data Interface Card
3500/94 Transient Data Interface Card
1900/55 Framework interface module
330108-91-05 Mechanical protection system
3300/20-12-01-01-00-00 Transient Data Interface Card
3500/64M Mechanical protection system
35003500/42 140734-02H Framework interface module
3500/01 129133-01 Framework interface module
3500/50-04-00 Framework interface module
1900/65A-00-00-02-00-01 BENTLY NEVADA
3500/15 133292-01 Transient Data Interface Card
128276-011 BENTLY NEVADA
3500/50-01-00-00 Transient Data Interface Card
3500/22M 138607-02 Mechanical protection system
125680-01 BENTLY NEVADA
3500/15 106M1079-01 Mechanical protection system
3500/40M 176449-01 Mechanical protection system
3500/15E Framework interface module
3500/92-02-01-00 BENTLY NEVADA
3500/22M BENTLY BENTLY NEVADA
130539-30 Mechanical protection system
3300/03-01-00 BENTLY NEVADA
330703-000-050-10-11-00 Framework interface module
330130-045-00-00 BENTLY NEVADA
136188-02 BENTLY NEVADA
3500/15-01-01-00 Mechanical protection system
3500/25-01-01 BENTLY NEVADA
3500/50-01-00-00 Framework interface module
3500/22M-01-01-00 BENTLY NEVADA
3500/65 BENTLY NEVADA
3300/47 Framework interface module
3500/93 135799-01 Framework interface module
330850-50-00 Mechanical protection system
3500-92-02-01-00 Framework interface module
126648-01 Transient Data Interface Card
177897-01 Transient Data Interface Card
3500/40M 176449-01 Framework interface module
3300/03-01-00 Mechanical protection system
330104-00-05-10-02-CN Mechanical protection system
3300/20-05-03-01-00-00 Transient Data Interface Card
3500/45 176449-04 Transient Data Interface Card
3500/95 BENTLY NEVADA
177896-01 Framework interface module
3500/42M-01-00 BENTLY NEVADA
3300/16 Transient Data Interface Card
3500/45 176449-04 Framework interface module

 

Company advantage service:
1.Has been engaged in industrial control industry for a long time, with a large number of inventories.
2.Industry leading, price advantage, quality assurance
3.Diversified models and products, and all kinds of rare and discontinued products
4.15 days free replacement for quality problems
All kinds of module card driver controller servo motor servo motor embedded card wires and cables Power module control module is applicable to steel, hydropower, nuclear power, power generation, glass factory, tire factory, rubber, thermal power, paper making, shipping, navigation, etc

ABB — AC 800M controller, Bailey, PM866 controller, IGCT silicon controlled 5SHY 3BHB01 3BHE00 3HNA00 DSQC series
BENTLY — 3500 system/proximitor, front and rear card, sensor, probe, cable 3500/20 3500/61 3500/05-01-02-00-001 3500/40M 176449-01 3500/22M 138607-01
Emerson — modbus card, power panel, controller, power supply, base, power module, switch 1C31,5X00, CE400, A6500-UM, SE3008,1B300,1X00,
EPRO — PR6423 PR6424 PR6425 PR6426 PR9376 PR9268 Data acquisition module, probe, speed sensor, vibration sensor
FOXBORO — FCP270 FCP280 FCM10EF FBM207 P0914TD CP40B FBI10E FBM02 FBM202 FBM207B P0400HE Thermal resistance input/output module, power module, communication module, cable, controller, switch
GE —- IS200/215/220/230/420 DS200/215 IC693/695/697/698 VMICPCI VMIVME 369-HI-R-M-0-0-E 469 module, air switch, I/O module, display, CPU module, power module, converter, CPU board, Ethernet module, integrated protection device, power module, gas turbine card
HIMA — F3 AIO 8/4 01 F3231 F8627X Z7116 F8621A 984862160 F3236 F6217 F7553 DI module, processor module, AI card, pulse encoder
Honeywell — Secure digital output card, program module, analog input card, CPU module, FIM card
MOOG — D136-001-007 Servo valve, controller, module
NI — SCXI-1100 PCI – PXIE – PCIE – SBRIO – CFP-AO-210 USB-6525 Information Acquisition Card, PXI Module, Card
Westinghouse — RTD thermal resistance input module, AI/AO/DI/DO module, power module, control module, base module
Woodward — 9907-164 5466-258 8200-1300 9907-149 9907-838 EASYGEN-3500-5/P2 8440-2145 Regulator, module, controller, governor
YOKOGAWA – Servo module, control cabinet node unit

Main products:
PLC, DCS, CPU module, communication module, input/output module (AI/AO/DI/DO), power module, silicon controlled module, terminal module, PXI module, servo drive, servo motor, industrial display screen, industrial keyboard, controller, encoder, regulator, sensor, I/O board, counting board, optical fiber interface board, acquisition card, gas turbine card, FIM card and other automatic spare parts